Optimize preference discovery with intelligent sampling
Focus on samples where the model is least confident. Perfect for refining decision boundaries.
85% efficiency for boundary refinement
Maximize coverage of the latent space using furthest-point sampling algorithms.
90% efficiency for initial exploration
Select samples that would most change the model if labeled. Optimal for rapid convergence.
75% efficiency for model improvement
Dynamically switch between strategies based on learning progress and user engagement.
95% overall efficiency
Identify preference clusters and sample representatively from each discovered mode.
80% efficiency for multi-modal
Always show the current best predictions plus strategic exploration samples.
70% efficiency, 95% satisfaction
See how different strategies perform in code
def random_sampling(n_samples): """Baseline: random sampling""" samples = [] for _ in range(n_samples): z = np.random.randn(512) samples.append(z) return samples # Pros: Simple, unbiased # Cons: Slow convergence # Efficiency: ~30-40%
def active_sampling(model, n_samples): """Intelligent active learning""" samples = [] # Phase 1: Diversity (30%) if model.n_labeled < 10: samples.extend( diversity_sample(n_samples) ) # Phase 2: Uncertainty (70%) else: candidates = generate_candidates( n=n_samples * 10 ) scores = model.predict_proba( candidates ) # Select most uncertain uncertainty = np.abs(scores - 0.5) idx = np.argsort(uncertainty)[:n_samples] samples = candidates[idx] return samples # Efficiency: ~85-95%
Begin with furthest-point sampling to establish a broad understanding of user preferences. This prevents early bias and ensures all preference modes are discoverable.
Track response times and consistency. Switch to exploitation-heavy strategies when users show signs of fatigue (slower responses, inconsistent ratings).
Use the 70/30 rule: 70% samples near known preferences, 30% exploration. Adjust based on application (entertainment: 80/20, research: 50/50).
Always include pre-marked negative samples in your active learning pool. This prevents the model from exploring inappropriate regions of the latent space.
Preferences change over time. Implement a sliding window approach where recent ratings have higher weight, and periodically re-explore old regions.
class AdaptiveActiveLearner: """State-of-the-art active learning for PLGL""" def __init__(self, latent_dim=512): self.latent_dim = latent_dim self.strategy_weights = { 'diversity': 1.0, 'uncertainty': 0.0, 'cluster': 0.0, 'exploitation': 0.0 } self.round = 0 self.discovered_modes = [] def select_batch(self, model, batch_size=20): """Intelligently select next batch of samples""" self.round += 1 samples = [] # Update strategy weights based on learning progress self._update_strategy_weights(model) # Allocate samples to each strategy for strategy, weight in self.strategy_weights.items(): n_samples = int(batch_size * weight) if n_samples > 0: if strategy == 'diversity': samples.extend(self._diversity_sampling(n_samples)) elif strategy == 'uncertainty': samples.extend(self._uncertainty_sampling(model, n_samples)) elif strategy == 'cluster': samples.extend(self._cluster_sampling(model, n_samples)) elif strategy == 'exploitation': samples.extend(self._exploitation_sampling(model, n_samples)) return np.array(samples) def _update_strategy_weights(self, model): """Dynamically adjust strategy weights""" n_labeled = len(model.training_data) if n_labeled < 20: # Early stage: maximum diversity self.strategy_weights = { 'diversity': 0.8, 'uncertainty': 0.0, 'cluster': 0.0, 'exploitation': 0.2 } elif n_labeled < 50: # Discovery stage: balance diversity and uncertainty self.strategy_weights = { 'diversity': 0.3, 'uncertainty': 0.4, 'cluster': 0.1, 'exploitation': 0.2 } elif n_labeled < 100: # Refinement stage: focus on boundaries self.strategy_weights = { 'diversity': 0.1, 'uncertainty': 0.4, 'cluster': 0.2, 'exploitation': 0.3 } else: # Optimization stage: exploit with periodic exploration explore_cycle = (self.round % 5 == 0) if explore_cycle: self.strategy_weights = { 'diversity': 0.3, 'uncertainty': 0.3, 'cluster': 0.2, 'exploitation': 0.2 } else: self.strategy_weights = { 'diversity': 0.05, 'uncertainty': 0.15, 'cluster': 0.1, 'exploitation': 0.7 }