🔬 Scientific Discovery with PLGL

Design molecules and materials by learning from property preferences

PLGL for Drug Discovery

Instead of explicitly defining molecular properties, researchers can rate generated molecules based on multiple criteria, and PLGL learns the complex trade-offs automatically.

1

Generate Molecules

Create diverse molecular structures from latent space

2

Evaluate Properties

Rate based on activity, toxicity, synthesizability

3

Optimize Design

Navigate to molecules with ideal property balance

Implementation for Molecular Design

1. Molecular VAE with Graph Neural Networks

Encode molecular structures into a continuous latent space:

import torch
import torch.nn as nn
from rdkit import Chem
from rdkit.Chem import Descriptors

class MolecularVAE(nn.Module):
    """VAE for molecular generation using SMILES representation"""
    
    def __init__(self, vocab_size, latent_dim=256):
        super().__init__()
        self.latent_dim = latent_dim
        
        # Encoder: SMILES → Latent
        self.encoder = nn.LSTM(
            input_size=vocab_size,
            hidden_size=512,
            num_layers=3,
            batch_first=True
        )
        
        self.fc_mu = nn.Linear(512, latent_dim)
        self.fc_logvar = nn.Linear(512, latent_dim)
        
        # Decoder: Latent → SMILES
        self.decoder = nn.LSTM(
            input_size=latent_dim,
            hidden_size=512,
            num_layers=3,
            batch_first=True
        )
        
        self.output = nn.Linear(512, vocab_size)
    
    def encode(self, x):
        _, (h, _) = self.encoder(x)
        h = h[-1]  # Last hidden state
        return self.fc_mu(h), self.fc_logvar(h)
    
    def decode(self, z):
        # Expand z for sequence generation
        z = z.unsqueeze(1).repeat(1, self.max_length, 1)
        output, _ = self.decoder(z)
        return self.output(output)

2. Multi-Objective Preference Learning

Learn complex trade-offs between molecular properties:

class MolecularPreferenceLearner:
    def __init__(self, molecular_vae):
        self.vae = molecular_vae
        self.samples = []
        
        # Multi-output preference model
        self.preference_model = nn.Sequential(
            nn.Linear(molecular_vae.latent_dim, 512),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(512, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 1),
            nn.Sigmoid()
        )
    
    def compute_molecular_properties(self, smiles):
        """Compute key molecular properties"""
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            return None
            
        properties = {
            'molecular_weight': Descriptors.MolWt(mol),
            'logp': Descriptors.MolLogP(mol),  # Lipophilicity
            'qed': Descriptors.qed(mol),       # Drug-likeness
            'sa_score': self.synthetic_accessibility(mol),
            'num_rings': Descriptors.RingCount(mol),
            'num_hbd': Descriptors.NumHDonors(mol),
            'num_hba': Descriptors.NumHAcceptors(mol)
        }
        
        return properties
    
    def collect_preferences(self, n_samples=100):
        """Collect preferences with property visualization"""
        for i in range(n_samples):
            # Generate molecule
            z = torch.randn(1, self.vae.latent_dim)
            smiles = self.vae.decode_to_smiles(z)
            
            # Compute properties
            props = self.compute_molecular_properties(smiles)
            
            # Display to chemist for rating
            print(f"\nMolecule {i+1}:")
            print(f"SMILES: {smiles}")
            print(f"MW: {props['molecular_weight']:.1f}")
            print(f"LogP: {props['logp']:.2f}")
            print(f"QED: {props['qed']:.2f}")
            print(f"Synthetic accessibility: {props['sa_score']:.2f}")
            
            # Get rating (0-1) based on overall desirability
            rating = get_chemist_rating()
            
            self.samples.append({
                'latent': z,
                'smiles': smiles,
                'properties': props,
                'rating': rating
            })

3. Property-Guided Optimization

Navigate latent space considering multiple objectives:

def optimize_molecule(self, target_properties=None, n_steps=1000):
    """Find molecules with desired property profile"""
    
    # Start from promising region if we have samples
    if self.samples:
        # Find best-rated sample as starting point
        best_idx = np.argmax([s['rating'] for s in self.samples])
        z = self.samples[best_idx]['latent'].clone()
    else:
        z = torch.randn(1, self.vae.latent_dim)
    
    z.requires_grad = True
    optimizer = torch.optim.Adam([z], lr=0.01)
    
    for step in range(n_steps):
        # Generate molecule
        smiles = self.vae.decode_to_smiles(z)
        props = self.compute_molecular_properties(smiles)
        
        if props is not None:
            # Score with preference model
            score = self.preference_model(z)
            
            # Add property constraints if specified
            if target_properties:
                property_loss = 0
                for prop, target in target_properties.items():
                    if prop in props:
                        # Squared error from target
                        property_loss += (props[prop] - target) ** 2
                
                # Combined objective
                loss = -score + 0.1 * property_loss
            else:
                loss = -score
            
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            # Constrain to valid latent space
            with torch.no_grad():
                z.clamp_(-3, 3)
    
    return self.vae.decode_to_smiles(z.detach())

4. Scaffold-Constrained Generation

Generate variations while preserving core structure:

def generate_analogs(self, scaffold_smiles, n_analogs=20):
    """Generate molecules with same scaffold but different properties"""
    
    # Encode scaffold
    scaffold_z = self.vae.encode_smiles(scaffold_smiles)
    
    analogs = []
    for i in range(n_analogs):
        # Add controlled noise
        noise = torch.randn_like(scaffold_z) * 0.1
        z_variant = scaffold_z + noise
        
        # Decode to molecule
        smiles = self.vae.decode_to_smiles(z_variant)
        
        # Check if scaffold is preserved
        if self.contains_scaffold(smiles, scaffold_smiles):
            score = self.preference_model(z_variant).item()
            props = self.compute_molecular_properties(smiles)
            
            analogs.append({
                'smiles': smiles,
                'score': score,
                'properties': props
            })
    
    # Sort by preference score
    analogs.sort(key=lambda x: x['score'], reverse=True)
    return analogs

Applications in Material Science

class MaterialPreferenceLearner:
    """PLGL for material property optimization"""
    
    def __init__(self, crystal_vae):
        self.vae = crystal_vae  # VAE for crystal structures
        self.preference_model = self.build_preference_model()
    
    def optimize_for_properties(self, preferences):
        """
        Find materials matching property preferences:
        - Mechanical: strength, ductility, hardness
        - Electrical: conductivity, band gap
        - Thermal: melting point, thermal expansion
        - Chemical: stability, reactivity
        """
        
        # Start from random crystal structure
        z = torch.randn(1, self.vae.latent_dim)
        
        for step in range(1000):
            # Generate crystal structure
            structure = self.vae.decode(z)
            
            # Predict properties (using ML or DFT)
            properties = self.predict_properties(structure)
            
            # Score based on preferences
            score = self.preference_model(z)
            
            # Update latent code
            z = self.gradient_step(z, score)
            
        return structure

Real-World Impact

💊 Drug Discovery

Design drugs with optimal balance of efficacy, safety, and manufacturability.

🔋 Battery Materials

Discover materials with ideal energy density and stability trade-offs.

🧬 Protein Design

Engineer proteins with desired function while maintaining stability.

🛡️ Protective Coatings

Design materials balancing durability, cost, and environmental impact.

Key Advantages for Science

  • Multi-Objective Optimization: Balance complex trade-offs without explicit weights
  • Expert Knowledge Integration: Captures implicit knowledge through ratings
  • Exploration of Novel Space: Discover unexpected solutions
  • Iterative Refinement: Continuously improve as understanding evolves
  • Reduced Trial and Error: Focus experiments on high-preference regions

Accelerate Your Research

Ready to apply PLGL to scientific discovery?