Like TikTok's algorithm but every piece of content is AI-generated just for you - no prompting needed!
Current AI: "Write me a story about..." → Generated content
PLGL Social: Just swipe! → Infinite personalized AI content
PLGL removes the biggest friction in generative AI - the need to describe what you want. Just like TikTok learns from your swipes, PLGL learns your content preferences and generates exactly what you'll love.
Start with diverse AI-generated content immediately:
class ZeroPromptFeed:
"""Infinite personalized content without prompting"""
def start_new_session(self, user_id: str):
"""Just start swiping - no setup needed!"""
# Generate diverse initial content
initial_content = []
for i in range(10):
# Diverse sampling strategy
if i < 3:
z = torch.randn(1, latent_dim) # Random
elif i < 6:
z = torch.randn(1, latent_dim) * 0.7 # Semi-random
else:
z = torch.randn(1, latent_dim) * 0.3 # Near center
# Generate content (video, music, story, etc.)
content = self.generator(z)
initial_content.append(content)
return initial_content
Every swipe, like, and view duration trains your preference model:
def swipe(self, user_id: str, content_item: ContentItem,
action: str, view_duration: float):
"""
Learn from user interactions:
- 'like': Strong positive signal
- 'skip': Negative signal
- 'share': Very strong positive
- View duration: Engagement metric
"""
# Convert interaction to preference score
if action == 'like':
preference = 0.8
elif action == 'share' or action == 'save':
preference = 1.0
elif action == 'skip' and view_duration < 3.0:
preference = 0.2
else:
# Watched but didn't engage
preference = 0.5 + (view_duration / 30.0) * 0.3
# Update preference model
self.update_preferences(user_id, content_item.latent, preference)
# Generate next content based on updated preferences
return self.generate_next_content(user_id)
The feed adapts immediately to your preferences:
def generate_next_content(self, user_id: str) -> ContentItem:
"""Generate personalized content in real-time"""
preference_model = self.preference_models[user_id]
# 70% exploitation (content you'll love)
if random.random() < 0.7:
# Optimize for high preference score
z = self.find_optimal_latent(preference_model)
else:
# 30% exploration (discover new interests)
z = self.smart_exploration(preference_model)
# Generate content
content = self.generator(z)
# Predict engagement
predicted_score = preference_model(z)
return ContentItem(
latent=z,
content=content,
predicted_engagement=predicted_score
)
Support different types of AI-generated content:
class MultiModalFeed:
def __init__(self):
self.generators = {
'video': VideoVAE(), # Short-form videos
'music': MusicVAE(), # Background tracks
'story': StoryGPT(), # Text narratives
'image': ImageGAN(), # Visual content
'meme': MemeGenerator() # Humor content
}
# Separate preference model for each content type
self.preference_models = {
content_type: PreferenceModel()
for content_type in self.generators
}
def generate_mixed_feed(self, user_id: str):
"""Mix different content types based on preferences"""
# Learn which content types user prefers
type_preferences = self.get_content_type_preferences(user_id)
# Generate feed with preferred mix
feed = []
for _ in range(10):
# Sample content type based on preferences
content_type = self.sample_content_type(type_preferences)
# Generate content of that type
content = self.generate_content(user_id, content_type)
feed.append(content)
return feed
Every piece of content is unique to you, yet feels viral:
def add_social_signals(self, content: ContentItem, user_id: str):
"""Add personalized 'social' elements"""
# Generate AI comments that match user's humor style
comments = self.generate_comments(content, user_id)
# Create synthetic engagement metrics
# (makes content feel popular without being viral)
content.likes = self.generate_engagement_count(content)
content.views = content.likes * random.randint(10, 100)
# Add personalized hashtags
content.hashtags = self.generate_hashtags(content, user_id)
return content
Infinite AI-generated videos matching your exact interests and humor.
Every song is new and created just for your taste.
Endless narratives in genres and styles you love.
Discover AI art that matches your aesthetic perfectly.
Procedural game levels that adapt to your play style.
AI-summarized news in your preferred style and depth.
class PrivatePreferenceLearning:
"""All preference learning happens on-device"""
def __init__(self):
# Lightweight models run locally
self.local_preference_model = CompactNN(params=50000)
# Only latent codes are sent to server
# Never raw preferences or personal data
self.sync_only_latents = True
def federated_learning_update(self):
"""Share learning without sharing data"""
# Compute gradient updates locally
local_gradients = self.compute_gradients()
# Add noise for differential privacy
private_gradients = self.add_privacy_noise(local_gradients)
# Only send anonymous updates
return private_gradients
Ready to create zero-prompt experiences?